

Signaux et Systèmes MT

Chapitre 1 Introduction

Michael Unser, LIB/STI

Septembre 2019

LEÇON D'INTRODUCTION

- But du cours
- Tour d'horizon rapide
 - 1.1 Notions de signal et de système
 - 1.2 Systèmes de communication
 - 1.3 Exemples de traitement du signal
 - 1.4 Exemples de micro-systèmes
- Contenu du cours
- Exercices et travaux pratiques

But du cours

- Caractérisation des différents types de signaux, continus et discrets, analogiques et numériques
- Modélisation des systèmes de traitement du signal, utilisés en instrumentation et pour les télécommunications
- Acquisition des bases pour consulter la littérature spécialisée
- Connaissances de base pour concevoir et réaliser de nouveaux micro-systèmes
- Préparation à l'imagerie et au traitement d'images

Unser / Signaux & Systèmes

1-3

Outils de base

Théorie des systèmes linéaires

- Opérateurs linéaires, produit scalaire (rudiments d'analyse fonctionnelle et Hilbertienne)
- Opérateurs de convolution (filtres)
- Equations différentielles ordinaires

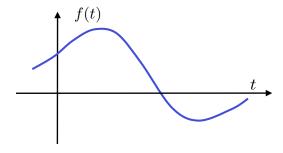
Transformation de Fourier

- Représentation des signaux; modélisation/caractérisation des systèmes linéaires invariant dans le temps (e.g. réponse fréquentielle)
- Techniques de calcul et de résolution dans le domaine de Fourier
- Utilisation rationnelle et efficace; représentation graphique
- Implémentation numérique

Transformation en z

Signaux et systèmes discrets

TOUR D'HORIZON RAPIDE


- 1.1 Notions de signal et de système
- 1.2 Systèmes de communication
- 1.3 Exemples de traitement du signal
- 1.4 Exemples de micro-systèmes

Unser / Signaux & Systèmes

1-5

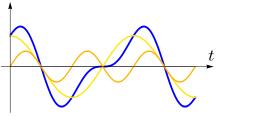
Notion de signal

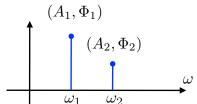
- Signal: support de l'information
- Représentation mathématique: fonction du temps

Exemple: Signaux acoustiques

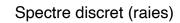
Voix, musique, bruit

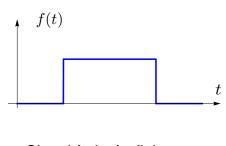
Support physique: ondes de pression

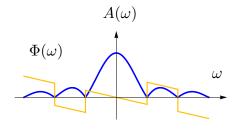

Classification des signaux


		Temps	
		SIGNAUX CONTINUS	SIGNAUX DISCRETS
Amplitude	SIGNAUX NON- QUANTIFIES	f(t) Analogiques	$f(nT)$ $\int f(nT)$ nT Discrets
	SIGNAUX QUANTIFIES	$f_q(t)$ t Analogiques $quantifi\'es$	$f_q(nT)$ $ -$

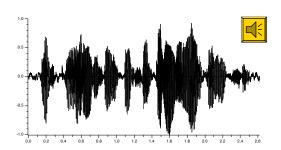
Unser / Signaux & Systèmes

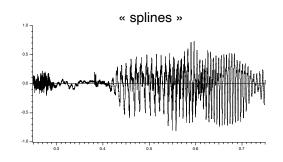

1-7


Notion de spectre

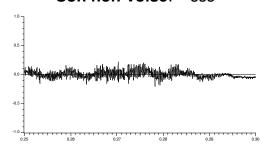


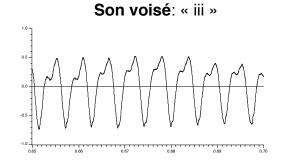
Somme de signaux sinusoïdaux




Signal à durée finie

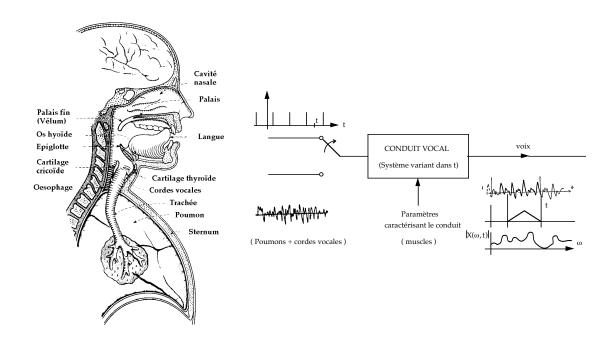
Densité spectrale


Signal de la parole


« Les splines sont des fonctions polynomiales par morceaux »

Son non-voisé: « sss »

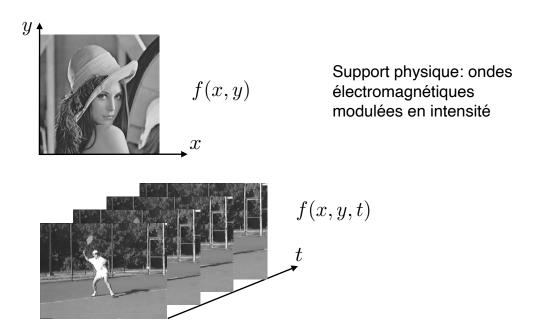
Unser / Signaux & Systèmes


1-9

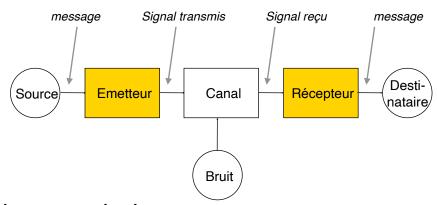
Notion de système

- Canal de transmission (analogique)
 - Equations différentielles à constantes localisées
 - Phénomènes d'atténuation et de dispersion
- Système de traitement
 - Filtre analogique (circuit RLC)
 - Filtre numérique (algorithme Matlab ou DSP)
 - Système hybride

Modélisation du conduit vocal



Unser / Signaux & Systèmes


1-11

Signaux multidimensionnels

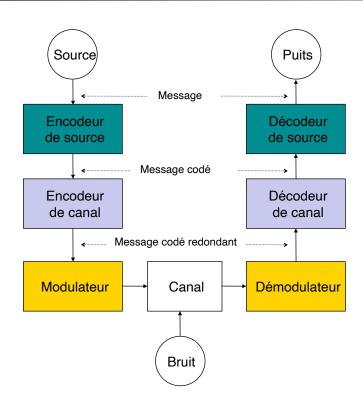
Signaux visuels (photo, film, vidéo)

1.2 SYSTÈMES DE COMMUNICATION

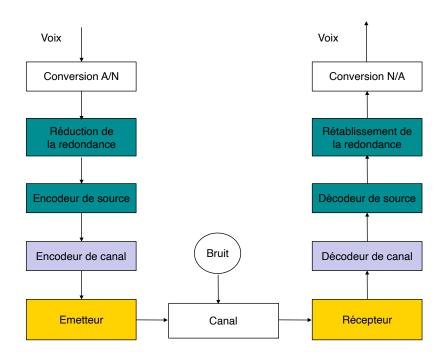
Canal de transmission

- Air, vide, eau
- Ligne ou câble téléphonique
- Fibre optique

Types de distorsions


- Bruit
- Atténuation
- Dispersion

Unser / Signaux & Systèmes


1-13

Système de communications numériques

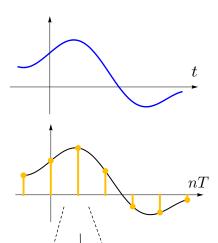
Source discrète — séquence de caractères

Unser / Signaux & Systèmes

Unser / Signaux & Systèmes

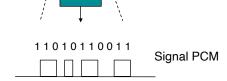
1-15

1.3 EXEMPLES DE TRAITEMENT DU SIGNAL


- Conversion A/N: modulation PCM
- Modulation impulsionnelle d'amplitude
- Modulation fréquentielle d'amplitude
- Prothèse auditive
- Compression d'images

Exemple de traitement du signal

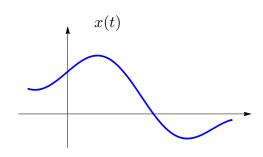
Conversion A/N: modulation PCM (pulse-coded modulation)



Filtrage

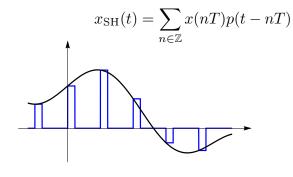
Echantillonnage

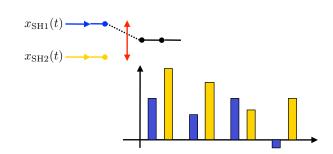
Numérisation

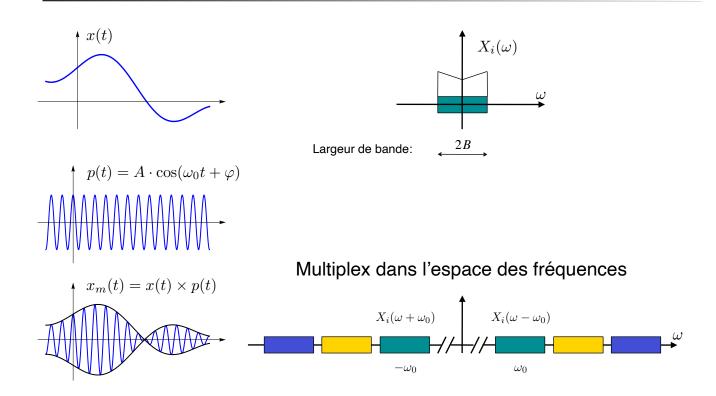


Unser / Signaux & Systèmes

1-17


Exemple de traitement du signal analogique


Modulation impulsionnelle d'amplitude « Sample-and-hold »


Multiplexage temporel

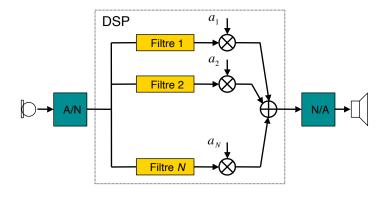
Exemple de traitement du signal analogique

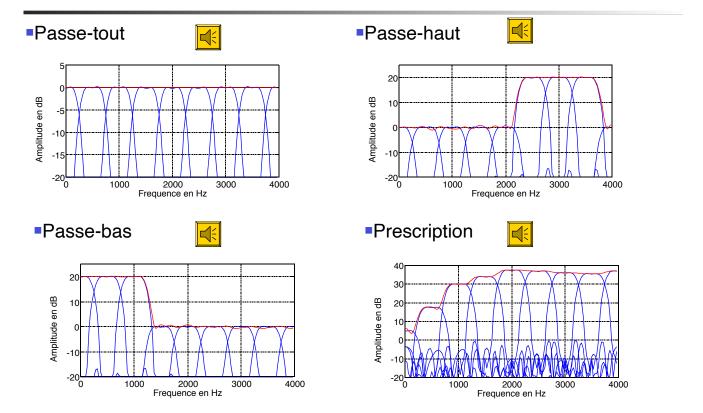
Modulation continue d'amplitude avec double bande latérale

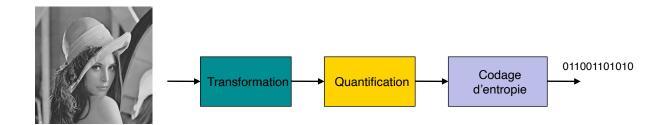
Unser / Signaux & Systèmes

1-19

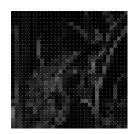
Prothèse auditive digitale


Prothèses auditives "derrière l'oreille"

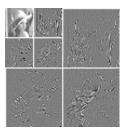

Prothèses auditives "dans le canal"


Exemples de corrections

Unser / Signaux & Systèmes


1-21

Traitement d'images: compression



Transformation d'images

JPEG 8×8 DCT

JPEG2000: Ondelettes

Unser / Signaux & Systèmes

Compression JPEG

Image originale: 256*256 pixels, 8 bits Taille du fichier (TIFF): 85604 bytes

Facteur de qualité JPEG: 20 Taux de compression: 10

Facteur de qualité JPEG: 5 Taux de compression: 22

Facteur de qualité JPEG: 0 Taux de compression: 27

Unser / Signaux & Systèmes

1-23

1.4 EXEMPLES DE MICRO-SYSTEMES

- Traitement du signal audio
- Communications
- Instrumentation et mesure
- Electronique médicale
- Traitement d'images

Micro-systèmes

Traitement du signal audio

- Filtrage
- Compression
- Effets spéciaux
- Son « surround »

Baladeurs mp3

Guitar processor

Logiciels pour l'écoute et l'enregistrement

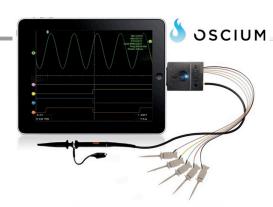
Unser / Signaux & Systèmes

1-25

Micro-systèmes

Communications

- Modulation, démodulation
- Détection, égalisation
- Compression
- Cryptographie


Téléphones portables

Montres GPS et caméra

Micro-systèmes

- Instrumentation et mesure
 - Filtrage
 - Analyse spectrale (FFT)
 - Synthèse de signaux

Oscilloscope numérique

Séismographe

Unser / Signaux & Systèmes

1-27

Micro-systèmes

- Electronique médicale
 - Filtrage
 - Analyse spectrale (FFT)
 - Détection

Echographie fœtale

Prothèse auditive

Micro-systèmes

- Traitement d'images; photographie numérique
 - Filtrage
 - Compression
 - Reconnaissance des formes
 - Analyse et traitement de l'information

Caméras numériques

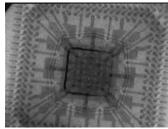
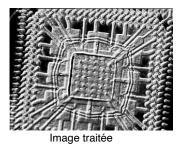



Image originale

Unser / Signaux & Systèmes

1-29

Contenu du cours: semestre d'hiver

- Systèmes analogiques linéaires
- Analyse de Fourier appliquée à la représentation des signaux et aux opérations fondamentales de traitement
- Echantillonnage des signaux analogiques
- Techniques de modulation
- Analyse et synthèse des filtres analogiques

Contenu du cours: semestre d'été

- Signaux discrets et numériques; transformée en z
- Systèmes discrets linéaires; filtres numériques
- Transformée de Fourier discrète; algorithmes rapides (FFT et convolution)
- Compression du signal; codage de source
- Notions de codage de canal
- Processus stationnaires; détection de signaux dans du bruit

Unser / Signaux & Systèmes

1-31

1.5 BIBLIOGRAPHIE

- Ouvrage conseillé
 - B.P. Lathi, Signal Processing and Linear Systems, Oxford University Press, UK, 1998.
- Autres
 - E.W. Kamen, B.S. Heck, Fundamentals of Signals and Systems, Prentice-Hall, 1999.
 - B.P. Lathi, Modern Digital and Analog Communication Systems, 3rd Edition, Oxford University Press, 1998.

Signaux & Systèmes: travail personnel

- Exercices
 - But des exercices
 - Organisation
 - Corrigés
- Travaux pratiques
 - Projets de semestres (7e ou 8e semestre)
 - Projet de master

Unser / Signaux & Systèmes

1-33